Riemann-Roch spaces of some Hurwitz curves

نویسندگان

  • David Joyner
  • Amy Ksir
  • Roger Vogeler
چکیده

Let q > 1 denote an integer relatively prime to 2, 3, 7 and for which G = PSL(2, q) is a Hurwitz group for a smooth projective curve X defined over C. We compute the G-module structure of the RiemannRoch space L(D), where D is an invariant divisor on X of positive degree. This depends on a computation of the ramification module, which we give explicitly. In particular, we obtain the decomposition of H1(X,C) as a G-module.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-point Codes from the GGS Curves

This paper is concerned with the construction of algebraic geometric codes defined from GGS curves. It is of significant use to describe bases for the Riemann-Roch spaces associated to some totally ramified places, which enables us to study multi-point AG codes. Along this line, we characterize explicitly the Weierstrass semigroups and pure gaps by an exhaustive computation of the basis for Rie...

متن کامل

Supplementary Lecture Notes on Elliptic Curves

1. What is an elliptic curve? 2 2. Mordell-Weil Groups 5 2.1. The Group Law on a Smooth, Plane Cubic Curve 5 2.2. Reminders on Commutative Groups 8 2.3. Some Elementary Results on Mordell-Weil Groups 9 2.4. The Mordell-Weil Theorem 11 2.5. K-Analytic Lie Groups 13 3. Background on Algebraic Varieties 15 3.1. Affine Varieties 15 3.2. Projective Varieties 18 3.3. Homogeneous Nullstellensätze 20 3...

متن کامل

Constant dimension codes from Riemann-Roch spaces

Some families of constant dimension codes arising from Riemann-Roch spaces associated to particular divisors of a curve X are constructed. These families are generalizations of the one constructed by Hansen [7].

متن کامل

0 D ec 2 00 2 REPRESENTATIONS OF FINITE GROUPS ON RIEMANN - ROCH SPACES

We study the action of a finite group on the Riemann-Roch space of certain divisors on a curve. If G is a finite subgroup of the automorphism group of a projective curve X and D is a divisor on X left stable by G then we show the natural representation of G on the Riemann-Roch space L(D) = LX (D) is a direct sum of irreducible representations of dimension ≤ d, where d is the size of the smalles...

متن کامل

Riemann-Hilbert problem associated to Frobenius manifold structures on Hurwitz spaces: irregular singularity

Solutions to the Riemann-Hilbert problems with irregular singularities naturally associated to semisimple Frobenius manifold structures on Hurwitz spaces (moduli spaces of meromorphic functions on Riemann surfaces) are constructed. The solutions are given in terms of meromorphic bidifferentials defined on the underlying Riemann surface. The relationship between different classes of Frobenius ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006